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The stability properties of 24 experimentally generated internal solitary waves (ISWs)
of extremely large amplitude, all with minimum Richardson number less than 1/4,
are investigated. The study is supplemented by fully nonlinear calculations in a
three-layer fluid. The waves move along a linearly stratified pycnocline (depth h2)
sandwiched between a thin upper layer (depth h1) and a deep lower layer (depth
h3), both homogeneous. In particular, the wave-induced velocity profile through
the pycnocline is measured by particle image velocimetry (PIV) and obtained in
computation. Breaking ISWs were found to have amplitudes (a1) in the range
a1 > 2.24

√
h1h2(1 + h2/h1), while stable waves were on or below this limit. Breaking

ISWs were investigated for 0.27 <h2/h1 < 1 and 4.14 < h3/(h1 + h2) < 7.14 and stable
waves for 0.36 <h2/h1 < 3.67 and 3.22 <h3/(h1 + h2) < 7.25. Kelvin–Helmholtz-like
billows were observed in the breaking cases. They had a length of 7.9h2 and a
propagation speed 0.09 times the wave speed. These measured values compared well
with predicted values from a stability analysis, assuming steady shear flow with
U (z) and ρ(z) taken at the wave maximum (U (z) horizontal velocity profile, ρ(z)
density along the vertical z). Only unstable modes in waves of sufficient strength
have the chance to grow sufficiently fast to develop breaking: the waves that broke
had an estimated growth (of unstable modes) more than 3.3–3.7 times than in the
strongest stable case. Evaluation of the minimum Richardson number (Rimin , in the
pycnocline), the horizontal length of a pocket of possible instability, with wave-induced
Ri < 14, (Lx) and the wavelength (λ), showed that all measurements fall within the
range Rimin = −0.23Lx/λ + 0.298 ± 0.016 in the (Lx/λ, Rimin)-plane. Breaking ISWs
were found for Lx/λ> 0.86 and stable waves for Lx/λ< 0.86. The results show a
sort of threshold-like behaviour in terms of Lx/λ. The results demonstrate that
the breaking threshold of Lx/λ= 0.86 was sharper than one based on a minimum
Richardson number and reveal that the Richardson number was found to become
almost antisymmetric across relatively thick pycnoclines, with the minimum occurring
towards the top part of the pycnocline.

1. Introduction
Internal solitary waves (ISWs) occur in all of the world’s oceans. The waves are

generated by tidal flows across subsea ridges or continental shelves or by the relaxation
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of pools of light or heavy water masses trapped by the wind along complex coastal
topographies. The waves are typically nonlinear and pulse-shaped and may attain
very large amplitudes compared with the water depth. Recent reviews (in particular,
Ostrovsky & Stepanyants 2005; Helfrich & Melville 2006; Grue 2006) give the status
of research on nonlinear ISWs. Very-large-amplitude waves may be stable, or they
may overturn and break because of either convective or shear-driven instability (or a
combination of both). The stability of ISWs is under current investigation because of
the fundamental role played by the waves in determining aspects of local and global
flow processes in the ocean. In particular, breaking ISWs enhance ambient turbulent
motions, contribute to overall mixing and redistribute the potential energy in the
water column. Moreover, the breaking caused by ISWs has strong implications for
the distributions of certain biological and geological tracers in the ocean.

ISWs may become highly nonlinear and, at the same time, remain stable (non-
breaking), as exemplified by the very large, stable ISWs observed in the Coastal
Ocean Probing Experiment (COPE) on the northern Oregon continental shelf. Wave
amplitudes up to 4–5 times the thickness of the mixed upper layer at rest were
documented by Stanton & Ostrovsky (1998) and reproduced by theoretical models
by Ostrovsky & Grue (2003). Another very large wave, also stable, was measured in
the South China Sea and documented by Duda et al. (2004; see also figure 2(b) in
Helfrich & Melville 2006). The wave had a vertical excursion of the mixed upper layer
of 150 m from the level at rest of 40 m, giving a non-dimensional amplitude of 3.75
relative to the thickness of the mixed upper layer, in a total water depth of 340 m. In
the present investigation, large, stable ISWs with a relative amplitude corresponding
to the COPE waves have been studied in a series of laboratory experiments. Two
specific examples (runs 16 and 20 in table 1) are highlighted in which the waves
have maximal excursions (amplitudes) of the mixed upper layer of 3.2 and 4.5 times
the thickness at rest, respectively (see § 4). In addition, stable ISWs of even larger
relative amplitudes have been generated in the laboratory, including a case in which
the excursion of the isopycnal surface separating the mixed upper layer from the
pycnocline was as large as 8.6 times the undisturbed thickness of the mixed layer
itself. The relative amplitude of this (stable) wave (see run 24, table 1, and figure 3c)
was about twice as large as the ISWs measured in COPE.

Shear instability plays a fundamental role in internal wave breaking and is
investigated in the present paper. For a parallel stratified shear flow, Miles (1961) and
Howard (1961) proved that gβ − (1/4)U ′2 > 0 is a sufficient condition for stability,
where gβ is the Brunt–Väisälä frequency squared and U ′ is the vertical shear in the
horizontal velocity. Moreover, Miles (1961) pointed out that the kinetic energy of
a normal mode in an ideal fluid may be infinite if the (non-negative) Richardson
number (Ri) drops below 1/4. Scotti & Corcos (1972) investigated experimentally the
instability of parallel stratified shear flow, and Hazel (1972) developed two computer
programs to integrate the Taylor–Goldstein (T-G) equation numerically for a set of
velocity profiles, finding that a steady shear flow became unstable when Ri was lower
than 0.2. Hazel (1972) expressed in his conclusion that Miles’s necessary condition for
instability is quite a good ad hoc sufficient criterion to use in the field. Recently, many
works have been published on the Kelvin–Helmholtz (KH) instability in stratified
shear layers, including, e.g. Caulfield & Peltier (2000), Peltier & Caulfield (2000),
Staquet (2000) and Smyth, Nash & Moum (2005). The hydrodynamic instability of
flows having a pycnocline comparatively much thinner than the shear layer were first
examined by Holmboe (1962), who showed that KH instability occurs at small Ri,
while at higher Ri, a second mode of instability occurs, consisting of two trains of
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interfacial waves travelling at the same speed but in opposite directions with respect
to the mean flow. Recent works on the Holmboe instability include Zhu & Lawrence
(2001) and Carpenter, Lawrence & Smyth (2007). Alexakis (2005) has found that
the shear layer must be twice as thick as the pycnocline for Holmboe instability
to develop. In the present experiments, the wave-induced velocity shear layer and
pycnocline are equally thick. Possible breaking because of a Holmboe instability is
excluded.

The mixing associated with an ISW of small amplitude and having an interface
assumed to be much thinner than the upper layer, which again was much thinner than
the lower layer, was investigated by Bogucki & Garrett (1993). Expressing the wave
speed c in terms of weakly nonlinear Korteweg–de Vries (KdV) and Benjamin–Ono
(BO) theories, they expressed the Richardson number by Ri =h2h1/a

2
1 , an asymptotic

result when a1/h1 → 0. Here h1 is the upper mixed layer thickness, h2 the pycnocline
thickness and a1 the wave amplitude. Assuming occurrence of wave breaking for
Ri = 1/4 they obtained a relation for the critical amplitude, namely ac =2

√
h1h2.

Breaking ISWs propagating shoreward on Oregon’s continental shelf (measured by
Moum et al. 2003) had values of Richardson number that could be estimated from
observation to be larger than 1/4. Breaking progressive interfacial waves were recently
investigated in the laboratory by Troy & Koseff (2005), who suggested that the time
scale of the destabilizing shear imposes an additional constraint on the (shear)
instability that lowers the critical Richardson number in their periodic waves below
1/4. The wave breaking occurred at a critical wave steepness that depended on the
wavelength. By large eddy simulations (LESs) for the motion on laboratory scale,
Fringer & Street (2003) studied how incipient two-dimensional instability develops
into a three-dimensional convective pattern for a pycnocline of sufficiently finite
thickness. The critical Richardson number at breaking was around Rimin = 0.13 in
their study.

In contrast to the situation obtained with the above periodic internal waves,
experimental study of the stability of large-amplitude ISWs have not yet been
published. Estimates of the minimal values of Ri in large-amplitude, laboratory-
generated ISWs that are either stable or unstable with respect to shear are presented
here. In the cases reported in this paper, the undisturbed background stratification
consists of a three-layer system in which two homogeneous layers are separated by a
linearly stratified pycnocline. (In a complementary paper by Carr et al., 2008, waves
in a two-layer system are measured for cases in which the upper layer is linearly
stratified and the lower layer homogeneous.) The density is continuous in all of the
experiments. The experimental velocity field, particularly the velocity profile through
the pycnocline, is measured using particle image velocimetry (PIV). The experiments
are complemented by fully nonlinear computations of ideal non-breaking ISWs that
move with constant speed and shape. The observed features of the non-breaking
experimental waves compare well with the computations; for cases in which there is
evidence of breaking in the trailing part of the wave, the computations still describe
well the structure of the leading non-breaking portion. The theory is used to evaluate
precisely the wave-induced density field (of the non-breaking part of the waves). By
fitting the computational velocity fields to their measured laboratory counterparts, the
local value of the Richardson number is obtained by computation. For non-breaking
waves, the difference between computation and experiment is very small. For breaking
waves the difference between computation and measurement is used to obtain precise
streamlines of the billows that are induced by the shear instability, in the trailing part
of the wave. A stability analysis is also presented; and the T-G equation with the
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Figure 1. Schematic diagram of experimental arrangement. Tank dimensions and typical
density profile described in § 2.1. Layer depths and amplitudes given in table 1.

velocity and density profiles obtained at the maximum of the computational wave is
solved. The predicted wavenumber and wave speed of the instability fits well with
the experimental measurement. Finally, a new stability criterion for shear instability
of ISWs is derived, which takes into account the horizontal extent of the domain of
the wave within which Ri < 1/4, in addition to the minimal value of the Richardson
number. The new stability criterion is consistent with all observations.

The paper is organized as follows: the next section presents the experimental set-
up and procedures for wave generation and measurement. Section 3 describes the
nonlinear computation of the waves and gives an exact formula for the calculation of
the Richardson number. In § 4 the stability of waves and observation of KH billows
are discussed. Stability calculations solving the T-G equation are performed. Finally,
results are compared to other publications. In § 5 the horizontal length (Lx) and shape
of a pocket in which Ri < 1/4 (a pocket of possible instability) is computed for all
experimental waves, as well as the wavelength (λ). A separation between stable and
breaking waves is found at Lx/λ= 0.86. Accuracy is assessed in § 5.2 and the effect of
the Reynolds number in § 5.3. Section 6 provides a summary and conclusion.

2. Experimental set-up and procedure
2.1. Wave tank facilities and wave generation

The experiments were performed in two different wave tank facilities having (length,
width, depth) dimensions of (12.6 m × 0.5 m × 1 m) and (6.4 m × 0.4 m × 0.6 m),
respectively. In all experiments, the lower layer was filled with a prepared solution of
brine of prescribed density ρ3. The midlayer was then added carefully via a floating
sponge arrangement. The double-bucket technique was used to obtain a linearly
stratified midlayer with density ranging from ρ3 to ρ1, and the top layer was then
filled with a prepared solution of density ρ1. The top layer had thickness h1 and
bottom layer thickness h3, with pycnocline thickness h2 (see figure 1). The Brunt–
Väisälä frequency in the pycnocline was constant (at rest) and given by N2

∞ = gΔ(ρ3 −
ρ1)/h2ρ3, where (ρ3 −ρ1)/ρ3 � 1. In all experiments, the relative density difference was
approximately 2 %.

Solitary waves of very large amplitude were generated by the step-pool technique
(Grue et al. 1999), in which a gate was introduced after the layers had been filled,
and a prescribed volume of brine of density ρ1 was added behind the gate (see
figure 1). By a careful choice of the initial volume, very-large-amplitude ISWs could
be generated. By quickly removing the gate, a single solitary wave of depression
was generated and propagated into the main section of the tank. The top of the
fluid layer was in all experiments covered by plates of polysterene. Note that with
a large initial volume, a train of rank-ordered solitary waves may be expected to
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develop, according to inverse scattering theory, assuming weak nonlinearity and use
of the KdV equation, as investigated experimentally by Kao, Pan & Renouard (1985).
However, the experimental generation of very large ISWs falls outside the range of
the weakly nonlinear KdV theory. The generation of the large waves may be arranged
such that nearly all of the volume trapped behind the gate goes into the volume of
one single solitary wave. Generation, in this case, is very fast, with the leading front of
the wave almost instantly taking the form of a theoretical solitary wave of very large
amplitude. Examples are documented in Grue et al. (1999) and Sveen et al. (2002).

The ISWs moving along the pycnocline were characterized by their propagation
speed c and amplitude. In this regard, it has been convenient to define two amplitudes
of the waves, viz. the amplitude a1 representing the maximal excursion of the mixed
upper layer and the amplitude a2 defining the maximal (negative) excursion of the
lower layer (see figure 1). The two amplitudes are always similar (see table 1). For
reference purposes, a coordinate system (x, z) is introduced, where x is the (horizontal)
propagation direction of the wave and z is oriented vertically upward. The origin is
chosen so that x =0 and z = 0 correspond to the trough of the wave and the localized
top of the water column. The point x = 0 is moving with the (steady) wave.

2.2. Evaluation of wave speed in experiment

All the experimental waves considered here exhibited either no instability or shear
instability developing at the trough of the waves. Using the streamline plots from
the experiments, the exact spatial location of the wave core could be determined.
The core was tracked during the passage of the wave to enable the propagation
velocity cexp to be evaluated in the experiment. The relative error in extracting cexp

in all experiments was estimated to be 8 % at maximum, while the relative error in
measuring the amplitude aexp was estimated to be 2 %.

Measured wave-propagation velocities were in the range 7–14 cm s−1 in the small
tank (e.g. 14 cm s−1 in run 1; figure 3d ) and 18–22 cm s−1 in the large tank (e.g.
22 cm s−1 in run 13; figure 3a). The complementary fully nonlinear wave speed and
amplitude were always evaluated from the model (§ 3).

Wave amplitude reduction for waves similar to those studied here has been
documented by Sveen et al. (2002) using the same wave tanks as in the present
study, resulting in finding a typical frictional attenuation of about 1.3 % and 4.8 %
per meter of propagation, in the large and small tanks, respectively. The wave
amplitudes presented in table 1 correspond to the ones recorded in the field of view.
Since the wave amplitude exhibits a small reduction during the propagation along
the tank, the ratio Lx/λ (see § 5 for definition of lengths Lx and λ) exhibits a small
reduction, while Rimin increases slightly. A wave that marginally breaks right after
generation will then become stable after a while – typically after it is reflected from
the wall in the far end. The reflected waves were not measured, however.

2.3. Particle image velocimetry

Particle image velocimetry (PIV) was used to visualize and quantify the experimental
wave-induced velocity field in a vertical, two-dimensional, illuminated slice of the
flow field. In the small tank, a continuous, collimated light sheet from an array
of light boxes placed below the (transparent) base of the tank was used. The light
sheet had a thickness of approximately 10 mm, and it illuminated a section of the
tank 1.4 m wide and 0.6 m deep. The illuminated section was seeded with neutrally
buoyant, light-reflecting tracer particles of ‘Pliolite’, having diameters in the range
150–300 μm. Motions within the vertical light sheet were viewed and recorded from
the side, using a fixed digital video camera set-up outside the tank. The camera had
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Ref. Experimental results Gardner Fully nonlinear Stability analysis

run date h1 h2 h3
h2
h1

h3
h1+h2

N
a1

h1+h2

a2
a1

cexp

c0

cG

c0

c
c0

Rmin
Lx

λ

2πa1
λ

2πh2
λ

λi

h2
cr/c0 γ

h1+h2
c0

F Observation

cm cm cm s−1

1 130605 5 2 30 0.4 4.29 3.46 1.59 ± 0.04 1.01 ± 0.05 1.47 ± 0.12 1.35 1.38 0.112 0.86 0.65 0.119 7.6 0.13 0.56 2.7 Breaking
2 190406 5 2 30 0.4 4.29 1.73 1.71 ± 0.04 1.01 ± 0.05 1.40 ± 0.11 1.36 1.40 0.103 0.91 0.83 0.140 8.3 0.13 0.60 2.8 Breaking
3 200605 5 2 29 0.4 4.14 3.43 1.42 ± 0.03 1.11 ± 0.05 1.35 ± 0.11 1.33 1.37 0.105 0.90 0.80 0.161 7.3 0.07 0.88 4.3 Breaking
4 180406 5 2 29 0.4 4.14 1.75 1.50 ± 0.04 1.06 ± 0.05 1.35 ± 0.11 1.33 1.37 0.100 0.90 0.67 0.128 7.7 0.09 0.73 3.6 Breaking
5 080206 11 4 64 0.36 4.27 2.32 1.54 ± 0.04 1.00 ± 0.05 1.41 ± 0.11 1.33 1.35 0.098 0.88 0.67 0.116 7.6 0.09 0.64 3.3 Breaking
6 080606 11 3 64 0.27 4.57 2.81 1.39 ± 0.03 1.00 ± 0.05 1.41 ± 0.11 1.30 1.35 0.082 0.91 0.77 0.119 6.8 0.13 0.93 4.3 Breaking
7 140606 9 3 64 0.33 5.33 2.65 1.61 ± 0.04 1.01 ± 0.05 1.41 ± 0.11 1.39 1.43 0.092 0.87 0.83 0.128 8.2 0.18 0.67 2.8 Breaking
8 130606 9 3 64 0.33 5.33 2.66 1.76 ± 0.04 1.01 ± 0.05 1.48 ± 0.12 1.39 1.45 0.083 0.94 0.85 0.120 8.2 0.14 0.79 3.7 Breaking
9 180705 2 2 28 1 7.00 3.32 2.36 ± 0.05 1.03 ± 0.05 1.68 ± 0.13 1.58 1.72 0.096 0.88 1.11 0.236 7.8 0.34 0.44 1.9 Breaking

10 190705 2 2 29 1 7.14 3.35 2.68 ± 0.06 1.01 ± 0.05 1.69 ± 0.14 1.63 1.73 0.087 0.94 1.21 0.226 7.7 0.30 0.50 2.3 Breaking
11 070606 5 5 67 1 6.70 1.96 2.54 ± 0.06 1.00 ± 0.05 1.82 ± 0.15 1.58 1.69 0.086 0.99 0.99 0.195 8.2 0.16 0.59 3.1 Breaking

12 070206 11 4 61 0.36 4.07 2.30 1.36 ± 0.03 1.01 ± 0.05 1.32 ± 0.11 1.32 1.34 0.12 0.78 0.67 0.132 7.5 0.08 0.39 1.5 Stable
13 090206 11 4 61 0.36 4.07 2.30 1.36 ± 0.03 1.00 ± 0.04 1.36 ± 0.11 1.32 1.34 0.12 0.78 0.67 0.132 7.5 0.08 0.39 1.5 Stable
14 200406 5 3 29 0.6 3.63 1.47 1.35 ± 0.03 1.02 ± 0.05 1.32 ± 0.11 1.34 1.36 0.17 0.62 0.72 0.20 6.8 0.20 0.19 0.6 Stable
15 080506 2 2 29 1 7.25 3.18 1.52 ± 0.03 1.10 ± 0.05 1.68 ± 0.13 1.62 1.60 0.23 0.37 1.05 0.34 ∞ 0 0 0 Stable
16 310106 5 10 57 2 3.80 1.46 1.06 ± 0.02 1.09 ± 0.05 1.44 ± 0.12 1.48 1.46 0.23 0.24 0.74 0.46 ∞ 0 0 0 Stable
17 010206 5 10 57 2 3.80 1.46 1.06 ± 0.02 1.09 ± 0.05 1.39 ± 0.11 1.48 1.46 0.23 0.24 0.74 0.46 ∞ 0 0 0 Stable
18 020206 5 10 58 2 3.87 1.43 1.21 ± 0.03 1.00 ± 0.04 1.41 ± 0.11 1.49 1.48 0.18 0.47 0.79 0.44 ∞ 0 0 0 Stable
19 010705 3 6 29 2 3.22 1.43 1.24 ± 0.03 1.02 ± 0.05 1.42 ± 0.11 1.44 1.42 0.15 0.67 0.69 0.37 7.1 0.37 0.04 0.1 Stable
20 030206 5 10 59 2 3.93 1.45 1.50 ± 0.03 1.01 ± 0.05 1.50 ± 0.12 1.50 1.50 0.13 0.75 0.79 0.35 7.8 0.37 0.14 0.6 Stable
21 060605 2 5 29 2.5 4.14 1.50 1.47 ± 0.03 1.06 ± 0.05 1.60 ± 0.13 1.56 1.57 0.15 0.56 0.94 0.46 8.2 0.63 0.02 0.1 Stable
22 060406 2 6 29 3 3.63 1.53 1.14 ± 0.03 1.08 ± 0.05 1.43 ± 0.11 1.53 1.52 0.15 0.56 0.79 0.52 ∞ 0 0 0 Stable
23 030406 2 6 28 3 3.50 1.47 1.56 ± 0.04 1.03 ± 0.05 1.55 ± 0.12 1.53 1.55 0.11 0.74 0.93 0.45 7.5 0.53 0.11 0.4 Stable
24 020605 1.5 5.5 29.5 3.67 4.14 1.47 1.74 ± 0.03 1.03 ± 0.05 1.67 ± 0.13 1.59 1.65 0.087 0.86 0.93 0.45 7.4 0.47 0.16 0.7 Stable

Table 1. Experimental parameters and predicted values from (i) extended KdV theory (Gardner et al. 1967), (ii) the fully nonlinear theory
described in § 3.2 and in the Appendix and (iii) the stability analysis from § 7.1. F = (γLx/2)/(|c − cr |).
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a spatial resolution and capture rate of 1372 × 1372 pixels and 24 frames per second
respectively. In the large tank a 100 Hz, 15 mJ per pulse Nd:YAG laser illuminated
a section approximately 0.5 m long, 2 mm thick and 1.0 m deep. The Pliolite tracer
particles had diameters in the range 500 − 700 μm, and the camera had a spatial
resolution of 1024 × 1024 pixels.

The dynamics of interest occurred mainly in the pycnocline and top layer. The
cameras were positioned level with the surface of the undisturbed flow to avoid
distortion and perspective errors in the upper portion of the flow field. The resulting
video record of the flow within the illuminated window was processed using the
software package DigiFlow (Dalziel 2006) to generate continuous, synoptic velocity
field data throughout the water column. In all cases, the recording system was
stationary with respect to the tank, and the ISW travelled through the illuminated
measurement window.

In the small tank, the experimental field of view, 0.75 m wide and 0.345 m high, was
centred about 4.14 m from the location of the gate at which the waves were generated.
In pixels, the field of view was 1095 wide and 504 high; i.e. 1 pixel represented 0.68 mm
in width and height. In the large tank the experimental field of view was 0.36 m by
0.36 m and 1024 by 1024 in pixels; i.e. 1 pixel represented 0.35 mm in width and
height. The camera was positioned at 7.5m from the end of the tank in which the
wave was generated.

Sixty-five different experimental runs were performed using the three-layer
configuration. Data from twenty-four of the experiments with the largest amplitude
have been retained and presented here. The parameter values and observational data
are presented in the first section of table 1. In the present experiments, h3/(h1 + h2) is
in the range 3.2–7.3, h2/h1 in the range 0.27–3.67 and amplitude a1/(h1 + h2) in the
range 1.06–2.68, while a1/a2 is always close to 1.

The breaking waves typically took the form of KH-like billows, starting at the
trough of the wave within the pycnocline. Note that there are significant differences
between this type of behaviour and the observations of convective breaking and
instability (starting in the top layer of the flow) for cases in which the stable
stratification comprises of a linearly stratified top layer above a lower homogeneous
layer of brine (Carr et al. 2008).

2.3.1. Refractive index matching

Refractive index matching was accounted for in all runs by using a linear
mapping transformation between measured world coordinates and images of the
flow, implemented automatically by DigiFlow. The maximum variation over 100 mm
in pixels between layers of different densities was found to be 1, in both tanks. One
pixel approximated as 1 mm in the large tank and 0.68 mm in the small one, which
gives a maximum variation due to refraction of 1 %.

3. Nonlinear computation of stable waves
3.1. Theoretical reference velocity; linear long-wave speed

The linear long-wave speed c0 of the internal wave motion is a natural reference
velocity for the experimental velocity field induced by the nonlinear motion and is
determined by c0 = N∞h2/Y when (ρ3 − ρ1)/ρ3 � 1 and Y is a function of h1/h2 and
h3/h2. The resulting non-dimensional velocity field then becomes independent of the
relative density jump when this jump is small (as in the ocean, which is the case here)
and is a function of h1/h2, h3/h2 and the non-dimensional wave amplitude. For linear
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waves, the stream function reads ψ(x, z) = a0φ(z) exp(ikx), where a0 denotes amplitude
and φ(z) satisfies the T-G equation, (d2/dz2 + N2/c2

lin − k2)φ = 0, with boundary
conditions φ(z = 0) = φ(z = − h1 − h2 − h3) = 0 and with φ and dφ/dz continuous at
the interfaces. In each layer N takes the value. Solution of the T-G equation takes

the form Aj cos(K̂j z) + Bj sin(K̂j z), where K̂j =
√

N2
j /c2

lin − k2 and Aj and Bj are
constants (j = 1, 2, 3), in each layer. The dispersion relation clin(k) is obtained using
the boundary conditions at z =0, z = − h1, z = − h1 − h2, z = − h1 − h2 − h3, giving

K̂2
2 − T1T2 − T2T3 − T3T1 = 0, where Tj = K̂j cot(K̂jhj ). The linear long wave speed (c0)

is obtained by letting k → 0 in the analysis. In the special case when N1 = N3 = 0 we
obtain

cotY +
h2/(h3Y ) − Yh1/h2

1 + h1/h3

= 0. (3.1)

The longest wave mode is obtained for Y = N∞h2/c0 in the interval (0, π).

3.2. Computation of the nonlinear experimental ISWs

The experimental waves are recomputed using an integral equation method, in a
frame of reference moving with the wave speed c, and thus are stationary. The
fully nonlinear method solves the field equation in each of the layers, assuming that
the Brunt–Väisälä frequency of the stratification at rest is constant in each layer.
Relevant to the present experiments, where the density is constant in the upper and
lower layers, the field equation in these layers reduces to the Laplace equation. In
the midlayer in which the Brunt–Väisälä frequency at rest is constant and equal to
N∞, the field equation becomes the Helmholtz equation. The fully nonlinear integral
equation method used here was derived by Fructus & Grue (2004) and is described in
more detail in the Appendix. A particular feature of the method is that it assumes a
stepwise constant Brunt–Väisälä frequency at rest, which is ideal for the experimental
stratifications under investigation. The method differs from the classical procedures
derived by Tung, Chan & Kubota (1982) and Turkington, Eydeland & Wang (1991),
assuming a continuously differentiable density profile in the vertical direction.

The experimental data and the computational predictions are compared in a
stepwise procedure: firstly, the amplitude a2 is estimated from the experiment, and,
secondly, the stream function and the velocity field are computed. Thirdly, the local
difference between the experimental and theoretical velocity vectors is computed. The
procedure is iterated until the difference between theory and experiment is acceptably
very small. The iterative procedure is used to identify the point of zero velocity in the
experimental wave, with respect to both the vertical and horizontal components. The
amplitudes a1 and a2 of the experimental waves (the maximal excursions of the upper
and lower parts of the pycnocline), together with the wave speed, are obtained from
the corresponding theoretical wave. The location of the pycnocline and its boundaries
are obtained from the isolines of the theory and the experimental velocity maps.

3.3. Evaluation of the local Richardson number

The wave-induced velocity field was obtained in the experiments through PIV, thereby
enabling the evaluation of the local shear, which is an essential component in the
determination of the local Richardson number, Ri. The wave-induced change in
the density field represents another important component in the understanding of
the stability of the wave. The local density field can be evaluated from the theoretical
computations of the wave, as in this case. The value of Ri is computed within the
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pycnocline of the computational wave, using

Ri =
N̂2

ω2
=

c(c − u)

δ2N2
∞

. (3.2)

The expression (3.2) is an exact result derived by Fructus & Grue (2004), their

equation (5.2), and is valid when N∞ differs from zero. In (3.2), N̂ denotes the local
Brunt–Väisälä frequency, ω the local vorticity, c the wave speed, u the horizontal
velocity, δ the vertical excursion of the streamline relative to rest (defined in a frame
of reference in which the wave is steady) and N∞ the Brunt–Väisälä frequency at
rest. It is noted that to derive (3.2), the local Brunt–Väisälä frequency (in the wave)

is related to the quantity at rest (in the far field) by N̂ = N∞
√

1 − u/c. Further, the
vorticity, ω, induced by the wave motion, is obtained from the equation of motion,

giving ω = N̂2δ/(c − u) = N2
∞δ/c.

As demonstrated below, there is only a very minor difference between the
experimental and computational velocity fields, in the cases in which the waves are
non-breaking. Further, in cases in which the waves break, the breaking takes place in
the tail of the wave. There is good correspondence between experiment and theory
in the leading part of the wave, even up to the point of maximum excursion. The
computational estimate of Ri is thus very close to the local Ri in the non-breaking
part in experiment. The value of Ri is obtained using (3.2), where c/c0, u/c and
δ/(h1 +h2) are computed by the nonlinear code and N∞h2/c0 from (3.1). (The density
field ρ(x, z) is evaluated in the calculation.) Measurement of c and u/c compares
favourably to computation (table 1 and figure 5). Discussion of the accuracy is given
in § 5.2 below.

Simulations were performed for all runs with 128, 256 and 512 nodes (resolution of
the distributions σ1, σ2, σ̂2, σ3 and elevations η and η̂ in (A6)–(A8)) in order to ensure
proper convergence. Convergence is generally slower in cases with very thin upper
layer and very large amplitude, as in the most extreme case, run 24. The simulations
with 512 nodes and layers h1, h2 and h3 of 1.5 cm, 5.5 cm and 29.5 cm exhibit good
convergence.

3.4. Comparison with the Gardner equation

Using an approximate model, Stanton & Ostrovsky (1998) found that the extended
KdV theory (eKdV) provided results in relatively good agreement with their
observations of the very large ISWs in COPE. The eKdV equation – also termed the
Gardner equation – reads

∂ηG

∂τ
+ (c0G + αηG + α1η

2)
∂ηG

∂x
+ β

∂3ηG

∂x3
= 0, (3.3)

where the coefficients are given in Stanton & Ostrovsky (1998). This equation is fully
integrable and admits solitary wave solutions. The waves have a maximum wave speed
and amplitude given by cGmax = c0G − α2/6α1 and aGmax = |α/α1|, respectively. Values
of cGmax were obtained from (3.3), where the density distribution was approximated
by a two-layer system with upper layer of thickness h1 + h2/2 and density ρ1 and
lower layer of thickness h3 +h2/2 and density ρ3. The estimates of cGmax are in rather
good agreement with the observations and the fully nonlinear theory (see table 1).
It is noted, however, that the amplitudes in the present experiments become larger
than the limiting amplitude of the eKdV solution. While the fully nonlinear model
is relevant for any of the experimental, non-breaking waves studied here, (3.3) is
less useful in predicting the wave shapes and velocities of the measurements in such
large-amplitude cases.
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Bogucki & Garrett (1993)

Ri = 1
4

Fully nonlinear,
h3

 h1 + h2
= 4.13

Figure 2. Present observations of breaking (�) and non-breaking (×) compared to calculations
of critical amplitude, assuming this occurs for Ri = 1/4: asymptotic result ac = 2

√
h2h1 (valid

for h2/h1 → 0, a1/h1 → 0) and fully nonlinear computations with h3/(h1 + h2) = 4.13 (solid
line with symbols).

4. Experimental results and discussion
4.1. Stable waves

Experiments including stable, non-breaking waves, labelled by runs 12–24 in the
lower part of table 1, are organized according to pycnocline thickness relative to
the upper mixed-layer depth, increasing from h2/h1 = 0.36 in run 12 to h2/h1 = 3.67
in run 24, corresponding to comparatively thin and thick pycnoclines, respectively.
The non-dimensional amplitude of the stable waves, except run 24, is in the range
a1/(h1 + h2) ∼ 1.06 − 1.56. In run 24, this is a1/(h1 + h2) = 1.74.

All stable (and breaking) waves have amplitudes larger than the critical amplitude
corresponding to an amplitude of a wave with Rimin =1/4. This is visualized by fully
nonlinear computations with h3/(h1 + h2) = 4.13, varying h2/h1, shown in figure 2.
(These computations have been published earlier in Fructus & Grue (2004, figure 13b
in their work) and Grue (2005, figure 14 in his work). Note that a few of the
experimental amplitudes in runs with h3/(h1 + h2) less than 4.13 and Ri < 1/4 (see
table 1) appear on the borderline of the computation with h3/(h1 + h2) = 4.13.

The figure also indicates the critical amplitude of ac =2
√

h1h2, which is an asympotic
result, valid for h2/h1 → 0, a1/h1 → 0, derived by Bogucki & Garrett (1993), who
worked with long internal KdV and BO solitons moving along very thin pycnoclines
and assumed that breaking occurs for Rimin =1/4. By use of a factor of 1 + h2/h1

(found by trial and error), it is seen here that all breaking waves occur for amplitudes
above a threshold of a1 = 2.24

√
h1h2(1 + h2/h1), h2/h1 < 1. The stable waves all

have amplitudes below this threshold. The highest stable wave moving along a thin
pycnocline with h2/h1 = 0.36 has amplitude corresponding to that threshold, while
waves moving along comparatively thicker pycnoclines have amplitudes that are far
below.

The symmetrical behaviour (along the propagation direction) of the non-breaking
waves with moderate to thick pycnoclines is illustrated in figure 3(a–c) by three of
the stable runs, 13, 18 and 24, with pycnocline thicknesses of h2/h1 = 0.36, 2 and 4
and non-dimensional amplitudes of a1/(h1 + h2) = 1.36, 1.21 and 1.74, respectively.
Note that the leading edge of the wave appears at the left of the figures and the tail
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Figure 3. For legend see next page.

to the right, since these plots are in the time frame. There is higher concentration
of particles within the pycnocline, and thus higher reflectivity, than in the upper and
lower layers. The pycnocline is indicated in the plots. From the measured velocity
field, the experimental stream function is obtained by integration, without smoothing,
and compared to computation, for all waves, with good comparison. An example is
shown in figure 4.

Measurement and theoretical computation of the velocity field of strong non-
breaking waves exhibit a horizontal velocity in the upper layer up to 0.9 times the
nonlinear wave phase velocity and down to −0.8 times c in the lower layer (run 24; see
figure 5 and in particular 5d ). The experimental velocity profile extracted from a few
velocity vector columns at the crest exhibits a good match to computation all along
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Figure 3. Stable and breaking waves. Leading part of wave to the left in plots. Stable runs
(a) 13, (b) 18, (c) 24; breaking runs (d ) 1, (e) 2, (f ) 8, (g) 11.
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Figure 4. Experimental (thin solid line) and computational (thick dashed line)
streamfunction in run 13.

the vertical. Note some minor deviations in the very upper part of the pycnocline
in run 24 and in the very lower part of the upper layer and also somewhat larger
deviations in experimental u(z) at wave maximum in the very upper part of the upper
layer. The figure confirms that the velocity tends to zero at the upper boundary. The
computed Richardson number can be seen in figure 6. In run 24, Ri(z) becomes almost
antisymmetric across the thick pycnocline (figure 6d ). For reference, the values of
minimum Richardson number computed for some of the stable cases are Rimin = 0.13
(run 20), Rimin = 0.12 (runs 12, 13), Rimin =0.11 (run 20) and Rimin = 0.087 (run 24).

4.2. Experiments that exhibit breaking

Eleven of the runs exhibited breaking. Results are summarized in the upper part of
table 1, with runs labelled with numbers from 1 to 11. The pycnocline thickness is
in the range h2/h1 ∼ 0.27 − 1 and non-dimensional amplitude in the range a1/(h1 +
h2) ∼ 1.39 − 2.54. All of the breaking waves have

a1 > 2.24
√

h1h2(1 + h2/h1), h2/h1 < 1

(see figure 2). The weakest amongst the breaking waves have a non-dimensional
amplitude of a1/

√
h1h2/(1+h2/h1) of 2.24 (run 3, with h2/h1 = 0.4, h3/(h1+h2) = 4.14,

Rimin = 0.105) and of 2.36 (run 9, with h2/h1 = 1, h3/(h1 + h2) = 7, Rimin = 0.096).
The strongest non-breaking wave has a1/

√
h1h2/(1 + h2/h1) = 2.25 (run 13, with

h2/h1 = 0.36, h3/(h1 + h2) = 4.07, Rimin = 0.12). This indicates a breaking threshold
based on amplitude, valid for h2/h1 up to 1.

Four of the waves are visualized in figure 3(d–g), showing traces of the computed
interfaces as well as images from experiment. Note that there is high reflectivity within
the pycnocline in which the density stratification tends to concentrate the neutrally
bouyant particles at their equilibrium level. The breaking waves are characterized by
the following behaviour:

(a) The leading part of all waves (to the left of the trough in figure 3) propagating
along an initially linearly stratified pycnocline separating two homogeneous layers is
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always stable. The characteristics of the leading part of the experimental waves are
in agreement with predictions from computation assuming an idealized, steady wave.

(b) Instability develops at the maximum negative depression of the wave (i.e. at
the trough).

(c) Notable differences in the tail of the experimental wave are shown when
comparing experiment and computation. The measured motion within the pycnocline
is seen to develop roll-like features that distort the homogeneous layers (see figure 7a).
The initially organized rolls lead subsequently to turbulent motion within the
pycnocline and eventual dissipation of the motion on small length scales.

The 11 runs with breaking waves may be divided into four subsets according to
depth ratios between the layers at rest.

4.2.1. Subset one; pycnocline thickness 40 % of upper-layer depth

Runs 1–4 were performed with depth ratios h2/h1 = 0.4, h3/(h1 + h2) ∼ 4.14 − 4.29
and non-dimensional wave amplitudes a1/(h1 + h2) ∼ 1.42 − 1.71. The experimental
stream function in the leading part of the wave and up to about the crest (results not
shown), as well as the velocity profile at wave maximum, compares well with computed
values. Experimental velocities are obtained from three neighbouring velocity columns
extracted from PIV (figure 5). (The velocity tends to zero at the upper fixed boundary
at which the non-slip condition applies.)
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Figure 5. Experimental (symbols: �, + and dots mark vectors from three neighbouring
velocity columns) and computational (solid line) velocity profiles u(z)/c and computational
Ri(z) (solid line, marked with Ri(z)) at wave maximum. (a) run 1; (b) run 8; (c) run 11,
(d ) run 24.

Computation of the Richardson number as a function of the vertical coordinate
throughout the pycnocline is included in the velocity profile plots (see also figure 6).
The computations show that Ri has a minimum of 0.112 at z/(h1 + h2) 	 −2.39,
corresponding to a level of about 40 % from the top and 60 % from the bottom
boundary of the pycnocline, relative to its local thickness (run 1). The minimum is
not very ‘peaky’, in the sense that Ri has a value in the range 0.112–0.12 in a rather
significant fraction of the pycnocline. Similar computations of Ri(z) are performed for
the three other experiments in the subset, giving Rimin =0.103 in run 2, Rimin =0.105
in run 3 and Rimin = 0.10 in run 4.

4.2.2. Subset two; effect of reducing the relative pycnocline thickness

In run 5 the pycnocline thickness is reduced from 40 % to 36 % of the upper-layer
depth, but non-dimensional parameters are otherwise the same as in run 4. The
thinner pycnocline enhances the shear, causing a slight reduction of the minimum
Richardson number. In run 6, the pycnocline thickness is further reduced to 27 % of
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Figure 7. (a) Run 1. Stream lines corresponding to the difference in velocity fields between
the numerical steady solution and experimental results. Only stream lines in the region in
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propagation speed (+) of unstable modes versus distance from the trough. Wavelength of most
unstable mode (solid) and propagation speed (dots) of the most unstable mode, calculated
from solving the T-G equation. (c) Stability analysis (regular (+) and non-uniform (�) grids),
results for growth rate γ = kci; (d ) cr versus relative wavelength 2π/k/h1 + h2.

the upper-layer depth, causing a reduction of the minimum Richardson number in
the experiment down to 0.08, even though the non-dimensional amplitude is smaller
in run 6 than in run 5.
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4.2.3. Subset three; effect of increasing h3/(h1 + h2)

Runs 7 and 8 have pycnocline thickness h2/h1 = 0.33 and a deeper lower layer
of h3/(h1 + h2) = 5.33. Non-dimensional amplitudes are 1.61 and 1.76 respectively.
Experimental and computational velocity profiles of run 8 show good agreement
(figure 5b). The computational profile of Ri(z) through the pycnocline is included in
the figure, with an expanded version in figure 6(b). The minimum value of Ri in run
8 occurs about 25 % from the top of the pycnocline. As a function of the vertical
coordinate Ri is more peaky in run 8 than run 1.

4.2.4. Subset four; pycnocline and upper layer equally thick

Subset three includes three breaking runs, 9–11. The pycnocline and upper layer
are now equally thick, with lower-layer depth h3/(h1 + h2) in the range 6.7–7.25.
Non-dimensional amplitudes of a1/(h1 + h2) = 2.36, 2.68, 2.54 are 60–70 % higher in
these runs compared to that of the previous ones. The experimentally determined and
computed values of the streamlines and velocity profile at wave maximum show good
agreement, with particularly good agreement in the top part of the pycnocline, where
the profile of the Richardson number also has its minimum, as visualized for the
strongest case of run 11 (figure 5c). The computational and experimental values of
Rimin are therefore very close. The minimum value of the Richardson number extends
to about 10 % of the pycnocline thickness along the vertical and attains a value of
0.096 in run 9, 0.087 in run 10 and 0.086 in run 11.

4.3. Observation of KH billows and stability calculations

Figure 7(a) shows synoptically the deviation of the streamlines of the experimental
velocity field from the steady (computational) wave in run 1. The plot shows clearly
that the magnitude of this deviation is greater downstream of the trough (left side of
the frame) than upstream. The billowing formed at the trough of the wave is a result
of KH instability and manifests in the plot as a series of clockwise-rotating, discrete
eddy features. By tracing the positions of the billows as they advect downstream
during the wave evolution, their centre-to-centre wavelength may be estimated as a
function of distance from the trough. The propagation speed may also be extracted
from the data. The results presented in figure 7 show that, close to the wave maximum,
the billows have a wavelength of λi = 7.9h2 and speed of cr = 0.09c. The billows have
a tendency to shorten in the downstream flow, while the speed increases with distance.

The propagation speed and growth rate of the most unstable modes observed in
experiment may be calculated from a stability analysis solving the T-G equation
(see (1.1) in Hazel 1972). As input to the stability calculations performed here the
computational velocity profile and Brunt–Väisälä frequency of each experiment, at
wave maximum, are used. See, for example, the velocity profiles u(z) in figure 5 and
Ri(z) profiles in figure 6, the latter providing the Brunt–Väisälä frequency through the
pycnocline. In the computations, it was assumed that the pycnocline depth relative to
the wave width is very thin, i.e. h2/λ� 1, where λ is the wave width. For example for
run 1, h2/λ=0.028. A more general stability analysis valid for h2/λ, not necessarily
small and accounting for the horizontal variation of the velocity and density fields, is
left for future study.

Integration of the stability equation yields the complex propagation speed of the
disturbance c = cr ± i|ci | (cr propagation speed and k|ci | growth rate of perturbation)
given the wavenumber k, where the latter is continuous. Numerical integration using
regular and non-uniform grids (1760 and 440 collocation points, giving same result)
provides cr (k) and k|ci(k)| (see figure 7c,d ). From each computation the wavenumber
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with maximal growth rate γ = k|ci(k)max | and corresponding propagation speed cr are
identified. For run 1, the most unstable mode has λi = 7.6h2 and speed cr = 0.09c, with
good agreement to the observation in experiment. We note that the stability analysis
described exhibits a computational billow wavelength of λi/h2 = 7.5 ± 0.7 for all the
runs with breaking waves. The growth rate is stronger for the waves that break than
for those which are stable (see table 1 and § 5.1).

4.4. Comparison to field measurements of breaking ISWs

The present measurements may be compared to field measurements of breaking
ISWs propagating shoreward on Oregon’s continental shelf. The Richardson number
estimated from observation was larger than 1/4 (Moum et al. 2003). One of the waves
that was observed to break had a rather thin pycnocline, with level at rest at depth
h1+h2 = 12 m and amplitude a1 = 20 m (Moum 2007, personal communication). Hence
a1/(h1+h2) = 1.67 in the observation, corresponding to an amplitude that is an average
of runs 1–8. The velocity profiles in figure 5(a, b) illustrate the corresponding velocity
profile of the wave in field observation. From the results in table 1, it is possible to
infer that Rimin = 0.10 ± 0.013 and the length of the KH rolls is λi = 7.6h2, the latter
corresponding to 24 m in the field.

4.5. Comparison to observations of breaking periodic internal waves

Planar-laser-induced fluoresence visualization by Troy & Koseff (2005) of the motion
within a 1 cm thin pycnocline sandwiched between two equally thick homogeneous
layers, driven by periodic interfacial mode-1 waves of large amplitude showed that the
breaking mechanism they observed was a modified shear instability, with characteristic
KH billow roll-up and collapse. The KH instability originated at the high-shear wave
crest and trough regions. The rolls in our experiments are about 80 % longer than
those observed experimentally by Troy & Koseff (2005), indicating different velocity
and density profiles in the two different experiments. The billow lengths obtained
by Troy & Koseff (2005) in their inviscid calculations were about half of their
experimental observations and may be due to the velocity shear and density variation
across the pycnocline being rather different in their experimental and theoretical
models. They did not measure the velocity profile within the pycnocline, nor did
they calculate the actual nonlinear velocity profile in their theoretical estimate. Their
estimation of a breaking threshold consistent with a minimum Richardson number
in the range Riw ∼ (0.07 − 0.08) ± 0.03 may be questioned, since the estimate is
based upon the use of theoretical velocity and density profiles that are not validated
in their experiment. The experiments presented here show breaking at Rimin = 0.11
(run 1) and a non-breaking wave with an even smaller Rimin of 0.087 (run 24), for
example.

Troy & Koseff (2005, figure 8 in their work) determined a wavenumber-dependent
onset of breaking and concluded that breaking occurred when ka 	

√
2kh2, where

k is the wavenumber (cf. figure 8a). The measurements of breaking presented here
fall within the range 0.1 < 2πh2/λ< 0.25 and have somewhat larger non-dimensional
amplitude (figure 8b). Although wave amplitude and wavelength for a progressive
wavetrain and a solitary wave are defined differently (a1/2 may be preferred as
amplitude, since a1 (or a2) in this comparison is, indeed, the wave height of the solitary
wave), observations of breaking occur for similar non-dimensional parameters here.

In a complementary study, Fringer & Street (2003) used a LES code with a
stratification and physical dimensions similar to those of Troy & Koseff (2005).
Periodic finite-amplitude internal waves broke as a result of an initial two-dimensional
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pycncline thickess h2, observed experimentally (Troy & Koseff, 2005) and numerically (Fringer
& Street, 2003). (b) Present observations of breaking (�) and nonbreaking (×) solitary waves
of amplitude a, wavelength λ (at half-amplitude), moving along a pycnocline of thickness h2.

instability that led to a three-dimensional convective instability. The instability was
divided into three regimes. In the first (kh2 < 0.56), relevant to the present experiments,
the most unstable wavelength was associated with a two-dimensional shear instability
small enough to develop KH billows at the interface but not energetic enough to
induce convective instability within the wave. For kh2 > 0.56, waves with energetic
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KH billows induced a convective instability. The critical Richardson number during
breaking of Rimin = 0.13 was evaluated directly from the vertical gradients of the
density and velocity in computation, and the two first points of the threshold
investigated by Fringer & Street (2003, figure 10 in their work) are included in
figure 8a. A third regime concerns the range kh2 > 2.33 and is outside the range of
interest here.

5. The domain of Ri < 1/4

KH-like billows are a characteristic feature of the experimentally observed breaking
waves. They are not present in the smaller non-breaking waves in which the shear
is weaker. The observable billows in the motion when the wave amplitude and shear
increase beyond certain levels indicate that the destabilizing effect of an unstable
velocity profile dominates the stabilizing effect of the density profile. The inverse ratio
between these effects is expressed in terms of the Richardson number. The velocity
shear of the wave takes place over a much longer horizontal extent than the width
of the pycnocline (in run 1, h2/λ= 0.02) and is a slowly varying function of time,
when observed at a fixed position along the wave tank. The pycnocline away from the
wave maximum is slightly tilted (in run 1, a1/λ= 0.1). For (breaking along) thinner
pycnoclines the values of h2/λ and a1/λ are even smaller, but the motion within the
pycnocline is then difficult to measure experimentally and obtain computationally.
The partial use here of stability results for plane shear flow can mathematically be
justified in the asymptotic limit when h2/λ → 0 and a1/λ → 0.

Differing from a parallel shear flow, the wave motion studied here obtains its
minimum Richardson number at a single point, with all surrounding values of Ri

being larger (including along the horizontal direction). A pocket of the wave of limited
horizontal extent where Ri becomes less than a certain value, and where potentially
unstable motion has the chance to grow (Ri < 1/4), is helpful in explaining the
unstable motion that is observed in experiment.

In all present experiments, the minimum Richardson number is less than 1/4, and
the solitary wave has a small region (a ‘pocket’) of finite lateral extent in which
Ri everywhere is less than 1/4. Computations of the pocket with Ri < 1/4, which
is a pocket of possible linear instability, are obtained for all experimental waves,
and indicated for run 18 in figure 9 (note the highly exaggerated vertical scale). The
horizontal length of the pocket is denoted by Lx , a quantity that grows according to
Lx = α0(1 − 4Rimin) or, alternatively, Rimin = − Lx/(4α0) + 1/4, where α0 is a constant
and 1/4−Rimin is a small, positive quantity. A horizontal length scale that is available
as a reference length is the wave width, λ, of the ISW, defined as the width of the lower
separation line of the pycnocline, at level of half-amplitude, a2/2 (figure 9). The wave
width, λ, is a highly nonlinear function of wave amplitude. Nonlinear computations
of the wave width given in many works (Michallet & Bartélemy 1998; Stanton &
Ostrovsky 1998; Ostrovsky & Grue 2003; Fructus & Grue 2004; Grue 2005) show
that λ increases with increasing a1/(h1 + h2) when this is larger than (about) 0.8
and decreases with increasing h2/h1 in this amplitude range. The computations by
Ostrovsky & Grue (2003), compared to the COPE field measurements, show that λ
decreases with increasing h3/(h1 + h2). The behaviour occurs for an amplitude range
away from saturation and conjugate flow limit.

Plots of the experimental runs in the (Lx/λ, Rimin)-plane show that all waves
observed are in the range Rimin = − 0.23Lx/λ+ 0.298 ± 0.016 (figure 10). By close
inspection, it is observed that experiments in which h2/h1 is small are close to the
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Figure 9. Computation of pocket of Ri < 1/4. Definition of horizontal length, Lx , of pocket
of Ri < 1/4 and wave width, λ. Run 18.

upper boundary defined by Rimin = − 0.23Lx/λ + 0.314 (runs 1–5, 12–15). The same
tendency is observed in cases in which the depth of the lower layer, h3/(h1 + h2), is
somewhat reduced, as in runs 11 and 19. However, experiments with relatively thick
pycnoclines, i.e. moderate to large values of h2/h1, appear along the lower boundary,
given by Rimin = − 0.23Lx/λ + 0.282 (runs 16–18, 20–24). Experiments with a thin
pycnocline, but with increasing h3/(h1 + h2), are also close to the lower line in the
plot; see particularly runs 6–10 of the breaking waves. Included in the plot is an
observation of a breaking wave (induced by shear instability) from Grue et al. (1999,
figure 7e in their work), where Rimin = 0.07. The corresponding value of Lx/λ= 1.03
was recalculated here.

The plots in figure 10 indicate that the line

Lx/λ= 0.86

separates breaking and non-breaking waves and provides a breaking criterion for the
present measurements. The separation line Lx/λ= 0.86 provides a sharper condition
than a breaking criterion based on a minimum Richardson number.

The results indicate that Lx/λ provides a sufficient criterion for breaking. The
interpretation is that breaking is observed when the potentially unstable modes of
the core of the wave have sufficient time to grow. This time is proportional to the
horizontal region of instability of the wave. The relevant reference length scale is the
wave width (measured here at the vertical excursion of the pycnocline corresponding
to the half amplitude, relative to rest). The weakest breaking waves all have a value
of Lx/λ that is slightly above 0.86. The strongest non-breaking wave (run 24) has
Lx/λ= 0.86 (and Rimin =0.09).

It is noted that the value of Ri(z) and its minimum Rimin is very sensitive to the
width of the pycnocline (see figure 5, particularly 5d in the case of a thick pycnocline).
The observations show that the minimum value of Ri is in the range between 0.09 and
0.11 for the weakest breaking waves illustrated in figure 10 and relative pycnocline
width in the range 0.33 <h2/h1 < 1. The value of Rimin does not provide a good
indication of breaking. Assessement of accuracy is further discussed in § 5.2.
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5.1. Estimated growth of the computed instability

The unstable perturbations that grow in the region behind the trough undergo an
amplification eF , where F may be estimated by

F = tgrowthγ,

where γ = kci corresponds to the maximal growth rate obtained in the stability
calculations introduced in § 4.3 (see table 1). The time period the instability may grow
can be estimated by tgrowth = 1

2
Lx/(c − cr ), where c − cr denotes the speed of the

perturbation relative to the wave motion. For large values of F , unstable modes are
expected to have sufficient time to grow to finite amplitude and thereby trigger wave
breaking. Conversely, when F is small, unstable modes are not expected to grow
sufficiently large before leaving the unstable region. Predictions from the stability
analysis presented in table 1 show that, for thin pycnoclines with h2/h1 in the range
0.27–0.4, F exceeds 2.7 for the unstable runs 1–8, while F =1.5 for the stable runs 12
and 13, also with thin pycnocline (h2/h1 = 0.36). Note particularly that all of the three
weakest breaking runs 1, 2 and 7 have F in the range 2.7–2.8, giving a growth of the
instabilities that becomes e2.7−1.5 	 3.3 (or e2.8−1.5 	 3.7) times larger than the stable
runs 12 and 13. The growth rate of unstable modes decays for comparatively thicker
pycnoclines, giving a value of F = 1.9 for run 9, the weakest breaking wave among
the runs 9–11 with h2/h1 = 1. For comparison, the stable run 20, with h2/h1 = 2, has
F =0.6, meaning that the growth of an instability in run 9 is e1.9−0.6 	 3.7 times
larger than in run 20. For still wider pycnocline, the growth rate is still reduced. Note
that value of non-dimensional growth rate γ (h1 + h2)/c0 increases from 0.11 to 0.16,
and F from 0.4 to 0.7, from stable run 23 to stable run 24.

5.2. Assessment of accuracy

Assessment of the similar runs 1–6 gives average values of Rimin and Lx/λ of 0.10 and
0.89, respectively, and standard deviations of 7 % and 2 %, respectively. These values
are obtained for waves that have a relative variation in the amplitude of 10 % and
imply that breaking occurs when Rimin becomes lower than 0.10 and Lx/λ exceeds
0.89. For run 1 we note that experimental u/c, and the wavelength and propagation
speed of the KH billows, are very close to those in the computation and stability
analysis, respectively, giving another indication of the accuracy of the results (in
run 1). The velocity profiles shown in figure 5(a–d ) may be used to judge the accuracy
of estimating Rimin in the experimental runs: For run 8 we note that computational
1 − u/c 	 0.67 while the experimental value 1 − u/c 	 0.53 for z/(h1 + h2) = − 2.425,
where Ri has its minimum. Using formula (3.2) for the Richardson number, this
reduces the estimate of Rimin from 0.083 in computation to 0.064 in experiment. The
value of Rimin in run 8 is thus in the range 0.073 ± 0.01. In run 11 experimental and
computational u/c are very close.

Inspection of 1 − u/c in run 24 shows that computation gives 1 − u/c 	 0.321,
while experiment gives 1 − u/c = 0.367 at vertical coordinate z/(h1 +h2) = − 2, where
Ri is the smallest. Using formula (3.2) for the Richardson number, the experimental
estimate of Rimin becomes 0.10. We further note that the three runs 22, 23 and 24,
all with experimental pycnoclines approximately 6 cm thick and similar mixed-upper-
layer thicknesses, have non-dimensional amplitudes of a1/(h1 + h2) = 1.14, 1.56 and
1.74 respectively. The values of Rimin are 0.15 and 0.11 (run 22 and run 23 respectively;
see table 1). By linearly extrapolating the decrease of Rimin with increasing a1/(h1+h2)
we obtain Rmin = 0.09 in run 24, very close to the computational value of 0.087. We
may conclude that Rimin is in the range 0.087 − 0.10 in run 24. The value of Lx/λ
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(in run 24) may similarly be obtained by extrapolating the values of Lx/λ in the
similar runs 22 and 23, giving Lx/λ= 0.823, very close to the computational estimate
of 0.86.

5.3. Effect of the Reynolds number

A Reynolds number may be introduced by Re = Δuh2/4ν, following the usual
definition for stratified shear flows, where h2 is the pycnocline thickness, ν kinematic
viscosity and Δu the velocity jump across the pycnocline. The stability of a stratified
shear flow is known to be affected by viscosity for Re � 100 (Hogg & Ivey 2003), the
effect being that viscosity reduces the growth rate and damps the high wavenumber
perturbations, lowering the most unstable perturbation wavenumber. In the present
experimental study, the Reynolds number ranges from approximately 800 in run 1
to 10 000 in run 20, being, therefore, one to two orders of magnitude larger than the
maximum value at which viscosity is believed to affect dramatically the instability. It
can be shown that scale effects are unimportant by comparing runs 4 and 5 which have
(about) the same non-dimensional amplitude and depth ratios and similar behaviour
of breaking, despite the fact that run 4 was in the smaller tank and run 5 in the
larger, and the Reynolds number was about three times higher in run 5 than in run 4.

6. Summary and conclusion
The stability properties of 24 experimental ISWs of extremely large amplitude

and minimum Richardson number (Ri) less than 1/4, moving horizontally in a
stratified fluid, have been investigated. A linearly stratified pycnocline of thickness
h2 was sandwiched between an upper homogeneous layer with thickness h1 and a
comparatively thicker lower homogeneous layer of thickness h3. PIV was used to
measure wave-induced velocities, obtaining experimental stream functions, velocity
profiles through the pycnocline (and elsewhere), wave speed, amplitude and, in cases
of breaking, the stream function of the KH billows. Fully nonlinear computations of
solitary wave motion in a three-layer fluid supported the measurements, obtaining:
wave speed, amplitude (a1), velocity field, streamlines, wave width λ and Ri. The
lateral extent (Lx) and shape of the pocket in which Ri < 1/4 were computed.

The 11 ISWs that broke all had amplitudes in the range

a1 > 2.24
√

h1h2(1 + h2/h1), h2/h1 < 1,

(where the inclusion of the factor 1 + h2/h1 was found by trial and error), while
the stable ISWs had amplitudes on or below this limit. The limit given above is a
generalization of the asymptotic threshold amplitude of 2

√
h1h2 derived by Bogucki

& Garrett (1993), assuming occurrence of breaking for Ri =1/4 (see illustration
in figure 2). For the present breaking ISWs, the pycnocline was in the range
0.27 <h2/h1 < 1, and the lower layer depth was in the range 4.14 <h3/(h1+h2) < 7.14.
For the stable ISWs, the pycnocline was in the range 0.36 <h2/h1 < 3.67 and the
lower layer depth in the range 3.22 <h3/(h1 + h2) < 7.25. The amplitudes of the
stable waves moving along relatively thick pycnoclines were far below the amplitude
threshold indicated above.

In the breaking case, run 1, the KH billow length and propagation speed were
observed to be λi/h2 = 7.9 and cr/c = 0.09 respectively. A quasi-steady stability
analysis solving the T-G equation with the nonlinear velocity and density profiles
at wave maximum as input was used to calculate the growth rate and travelling speed
of the perturbation, as functions of the wavelength. The most unstable mode had a
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wavelength of λi/h2 = 7.5±0.7, for all breaking waves, comparing well to experimental
observation. The stability analysis showed that λi/h2 = 7.5 ± 0.7 also for the stable
waves, but growth rates were then significantly smaller. The estimated growth of the
most unstable modes was found to be more than 3.3–3.7 times higher for the waves
that broke, compared to the strongest non-breaking waves, for corresponding h2/h1.
The growth decayed with increasing h2/h1.

The minimum Richardson number (Rimin), horizontal length (Lx) of the pocket with
wave-induced Ri < 1/4, a pocket of possible instability and wavelength (λ) were eval-
uated for all runs. All measurements fell within the range Rimin = −0.23Lx/λ+0.298±
0.016 in the (Lx/λ, Rimin)-plane. In this range, the breaking ISWs were found for

Lx/λ> 0.86,

while stable ISWs were found for Lx/λ< 0.86. The breaking threshold of Lx/λ= 0.86
is sharper than one based on a minimum Richardson number. The physical inter-
pretation is that unstable modes need some time to grow before breaking is observed.
Computations show that Ri(z) becomes almost antisymmetric across relatively broad
pycnoclines, with Rimin occurring towards the top part of the pycnocline.
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Appendix. Nonlinear three-layer motion by integral equations
In the case of nonlinear motion the field equation in the homogeneous top and

bottom layers is the Laplace equation. In the midlayer with constant Brunt–Väisälä
frequency (at rest) the field equation reads

∇2ψ2 +
N2

∞
c2

ψ2 = 0, (A1)

where c denotes the nonlinear wave speed.
An interface I localized at z = η(x) − h1 separates the upper layer number one

from the midlayer number two. Likewise, an interface Î localized at z = η̂(x)−h1 −h2

separates the midlayer number two from the lower layer number three. The values of
η and η̂ vanish for x → ±∞. The wave motion is taking place between the rigid lids
at the top and bottom boundaries of the fluid layer in which the boundary conditions
are ψ1 = 0 at z = 0 and ψ3 = 0 at z = − h1 − h2 − h3.

The kinematic and dynamic boundary conditions at the separation line at z = η(x)−
h1 gives that

∂ψj

∂s
− c

∂η

∂s
= 0, j = 1, 2, (A2)

∂ψ2

∂n
=

∂ψ1

∂n
, (A3)
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with both satisfied at I , where s denotes the arclength along I and n the normal,

pointing out of midlayer 2. Similar relations hold for ψ2,3 at the lower boundary Î

with η replaced by η̂.
The nonlinear wave problem is solved by means of integral equations. The relevant

Green function satisfies the Helmholtz equation in each of the layers. For this purpose,
we introduce the function

Z0(α, x̂) = Y0(x̂) + αJ0(x̂), (A4)

where J0 and Y0 denote Bessel functions of order zero, of first and second kinds,
respectively, and α a real constant to be choosen (Fructus & Grue 2004). The
importance of the non-singular term αJ0(x̂) is indicated in (A12) below; Z0(α, x̂)
behaves like ln x̂ for x̂ → 0. In the upper layer the choice of Green function reads
G1(x, z, x ′, z′) = ln(r/r1), where r = [(x−x ′)2+(z−z′)]1/2 and r1 = [(x−x ′)2+(z+z′)2]1/2;
G1 becomes zero at z = 0. In the midlayer the function

G2(x, z, x ′, z′) =
π

2
Z0(α, rN∞/c) (A5)

is used, and in the lower layer, G3(x, z, x ′, z′) = ln(r/r3), where r3 = [(x − x ′)2 + (z +
z′ +2H )2]1/2. The function G3 becomes zero at z = −H = − (h1 +h2 +h3). The stream
functions are determined by singularity distributions, i.e.

ψ1 =

∫
I

σ1(s
′)G1(x, z, x ′(s ′), z′(s ′))ds ′, (A6)

ψ3 =

∫
Î

σ3(s
′)G3(x, z, x ′(s ′), z′(s ′))ds ′, (A7)

ψ2 =

∫
I

σ2(s
′)G2(x, z, x ′(s ′), z′(s ′))ds ′ +

∫
Î

σ̂2(s
′)G2(x, z, x ′(s ′), z′(s ′))ds ′, (A8)

where σ1, σ2, σ̂2, σ3 denote distributions to be determined. The kinematic boundary
conditions (A2) give, at I ,

PV

∫
I

σ1(s
′)

∂G1

∂s
ds ′ − c

∂η

∂s
= 0, (A9)

PV

∫
I

σ2(s
′)

∂G2

∂s
ds ′ +

∫
Î

σ̂2(s
′)

∂G2

∂s
ds ′ − c

∂η

∂s
= 0, (A10)

where PV means principal value. The condition (A3) gives

π[σ1(s) + σ2(s)] +

∫
I

(
σ2(s

′)
∂G2

∂n
− σ1(s

′)
∂G1

∂n

)
ds ′ +

∫
Î

σ̂2(s
′)

∂G2

∂n
ds ′ = 0 . (A11)

The integral equations ((A9)–(A11) are complemented by a set of similar equations

at the lower boundary Î . The six equations determine the four unknown singularity
distributions σ1, σ2, σ̂2, σ3 and the profiles η and η̂. The computations are initiated
by weakly nonlinear KdV solution, and small increments in the wave speed c are
specified. The linear part of the integral equation operator is inverted analytically by
means of Fourier transform, giving A(k)X(k) = F {NL(X)} (k),
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X=

⎛
⎜⎜⎜⎜⎜⎝

F {σ1}
F {σ2}
F {σ̂2}
F {σ3}
F {η}
F {η̂}

⎞
⎟⎟⎟⎟⎟⎠A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

â[1 − e−2|k|h1 ] 0 0 0 ick 0

π[1 + e−2|k|h1 ] π β
(2)
3 0 0 0

0 β
(2)
1 β

(2)
2 0 ick 0

0 β
(2)
2 β

(2)
1 0 0 ick

0 β
(2)
3 π π[1 + e−2|k|h3 ] 0 0

0 0 0 â[1 − e−2|k|h3 ] 0 ick

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where F denotes Fourier transform and â = iπsign(k). The coefficients β
(j )
i and the

nonlinear terms NLi , i = 1.6 are given in Fructus & Grue (2004). The set of equations
involves the transform of the derivative of the Green function and appears in the
following way:

F
{

[Y1(K |u|) + αJ1(K |u|)] u

|u|

}
=

⎧⎨
⎩

−2αik
K

√
K2−k2

, |k| <K ,

2ik
K

√
k2−K2

, |k| >K,
(A12)

where J1 and Y1 denote Bessel functions of order one, of first and second kinds,
respectively, and K = N∞/c. The inclusion of the non-singular function, αJ1 in the
Green function means that the spectrum in Fourier space becomes complete.
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Michallet, H. & Bartélemy 1998 Experimental study of interfacial solitary waves. J. Fluid Mech.
366, 159–177.

Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.

Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L. & Vagle, S. 2003 Structure and generation
of turbulence at interfaces strained by internal solitary waves propagating shoreward over
the continental shelf. J. Phys. Oceanogr. 33, 2093–2112.

Ostrovsky, L. A. & Grue, J. 2003 Evolution equations for strongly nonlinear internal waves. Phys.
Fluids 15 (10), 2934–2948.

Ostrovsky, L. A. & Stepanyants, Y. A. 2005 Internal solitons in laboratory experiments. Chaos 15,
037111–1–28.

Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid
Mech. 35, 135–167.

Scotti, R. S. & Corcos, G. M. 1972 An experiment on the stability of small disturbances in a
stratified free shear layer. J. Fluid Mech. 52, 499–528.

Smyth, W. D., Nash, J. D. & Moum, J. N. 2005 Differential diffusion in breaking Kelvin–Helmholtz
billows. J. Phys. Oceanogr. 35, 1004–1022.

Stanton, T. P. & Ostrovsky, L. A. 1998 Observations of highly nonlinear internal solitons over the
continental shelf. Geophys. Res. Lett. 25 (14), 2695–2698.

Staquet, C. 2000 Mixing in a stably stratified shear layer: two- and three-dimensional numerical
experiments. Fluid Dyn. Res. 27, 367–404.

Sveen, J. K., Guo & Grue, J. 2002 On the breaking of internal solitary waves at a ridge. J. Fluid
Mech. 469, 161–188.

Troy, C. D. & Koseff, J. R. 2005 The instability and breaking of long internal waves. J. Fluid
Mech. 543, 107–136.

Tung, K.-K., Chan, T. F. & Kubota, T. 1982 Large amplitude internal waves of permanent form.
Stud. Appl. Math. 66, 1–44.

Turkington, B., Eydeland, A. & Wang, S. 1991 A computational method for solitary internal
waves in a continuously stratified fluid. Stud. Appl. Math. 85, 93–127.

Zhu, D. Z. & Lawrence, G. A. 2001 Holmboe’s instability in exchange flows. J. Fluid Mech. 429,
391–409.


